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pandemic, as might be expected, gave unprecedented 
public exposure to the role of models in science.

In response to the developments described above, 
the Israel National Institute for Health Policy Research 
(NIHP) organized a “modelists dialog” in early February 
2022. The meeting included presentations from five sci-
entists who have been actively engaged in modeling data 
on SARS-CoV-2 and two expert discussions. It drew an 
online audience of more than 250 participants, empha-
sizing both the importance of and the wide interest in the 
use of models.

The purpose of this article is to summarize and synthe-
size the ideas and approaches presented at the meeting, 
noting both the accomplishments and the challenges. 
We will not present the models themselves in any detail; 
readers interested in the precise formulations and results 
can find them in the papers published by the modeling 
teams, which we include as references. Many challenges 
still lie ahead. With further waves of the pandemic an 
ever-present threat, efforts are needed now to establish 
the scientific knowledge and the infrastructure that will 
make modeling increasingly effective for supporting pub-
lic health policy.

Introduction
Models play a significant role in all branches of science. 
They are used to abstract and to represent natural phe-
nomena, and to understand complex systems and pro-
cesses. Models have been important tools during the 
SARS-CoV-2 pandemic, guiding efforts to track disease 
status, to understand its transmission dynamics, to fore-
cast disease levels and health system loads, and to guide 
public policy. The high profile media coverage of the 
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Orly Manor, the director of the Institute, described 
the background and motivation for the meeting. Nach-
man Ash, the Director General of the Ministry of Health, 
noted the importance of models in deciding on policy, 
both in the ministry and in discussions by the govern-
ment. The main part of the meeting was the presentation 
of methods by the five modelists: Hilla De-Leon (Tech-
nion), Doron Gazit (Hebrew University of Jerusalem), 
Amit Huppert (Gertner Institute), Hagai Rossman 
(Weizmann Institute of Science) and Eli Sprecher (Tel 
Aviv Sourasky Medical Center, TASMC). All the speakers 
emphasized that they worked in larger research groups 
and that the ideas and results reflected the combined 
effort of the group. The talks were followed by discus-
sions from Yoav Benjamini (Tel Aviv University) and Ran 
Balicer (Clalit Medical Services and Ben Gurion Univer-
sity and chair of the national cabinet of experts advising 
the Israeli government).

The goals of modeling
An essential issue for framing the discussion here is 
to delineate the goals that the models aim to achieve. 
Many different aspects were described; they are listed in 
Table 1.

All the speakers and discussants emphasized applica-
tion by decision makers as an important aspect of mod-
eling, with the implied need to focus modeling efforts in 
directions that address the dilemmas faced by those mak-
ing decisions.

Data and models
Another common theme that influenced all the model-
ists was the need to link their efforts to the available data; 
the inability to obtain data imposed limitations for many 
of the modeling teams. The critical role of data availabil-
ity for modeling was mentioned by several of the speak-
ers and was especially emphasized by Benjamini; it was a 
substantial part of his discussion.

Table  2 describes some of the important issues that 
were raised. Many of them are part of the InfoQ frame-
work [1]; others add facets to that framework.

Data is an essential input to all the modeling efforts. 
Even with ideal models, prediction accuracy cannot be 
any better than the quality of the data. Inaccurate or 
incomplete data inevitably lead to biased predictions. 
Moreover, often the nature of the data dictated the type 
of modeling that was possible. For example, some of 
the infection models required data on daily infection 

Table 1 Problems that were addressed with the help of 
mathematical and statistical models
Provide a “reference scenario”.

Track the current status of the pandemic.

Estimate the pandemic’s dynamics.

Generate short-term predictions (“nowcasting”).

Generate long-term predictions.

Determine ahead of time the need for infrastructural changes in health-
care facilities to accommodate predicted influx of severe cases.

Answer specific questions.

Understand the infection-disease-hospitalization-death cycle.

Assess interventions such as lockdowns or vaccination.

Table 2 Issues with data quality and availability
Issue Description
Resolution Often data were available only at broad, summary 

scales. Some models required more detailed, 
individual information. For example, the daily 
number of infected was a standard measure for 
tracking the status of the epidemic, but (i) it was 
available at the country level and (ii) with no age 
breakdown for a long period of time. Hence it had 
only limited information for modeling the effects 
of social contact.

Integration Data came from many different sources, includ-
ing the Ministry of Health, hospitals, the health 
funds, the Central Bureau of Statistics, Ben Gurion 
airport, etc. Integrating the data was challenging, 
especially in early stages of the epidemic. Legal 
restrictions also limit the ability to combine these 
data for use in modeling.

Uniformity The use of data from diverse sources also 
highlighted the need for uniformity in recording 
and reporting. For example, hospitals and the 
Ministry of Health were not always synchronized 
with regard to defining which patients should be 
counted as “severely ill” COVID-19 cases.

Quality Are the data accurate and reliable? When they 
are combined across different sources or time 
periods, are they uniform? For example, a change 
in the definition of what constitutes a “severely ill” 
COVID-19 patient can have dramatic impact if no 
adjustment is made in models. Similarly, reported 
data on infection rates, and fraction of positive 
tests, are affected by the false positive and nega-
tive rates of the testing protocols.

Completeness What are essential features that are missing from 
the data? For example, knowledge of day of 
exposure to the virus is relevant for some of the 
models, but was generally not provided.

Temporal 
Relevance

Many models focused on “nowcasting”. Effective 
use of these models requires rapid data availabil-
ity. The necessary data were not always immedi-
ately obtainable.

Chronology Time course data was important for many models. 
For these models, it is essential to know and to 
correctly model the time lags typical for, say, time 
from exposure to infection, infection to recovery 
or infection to hospitalization and to severe illness 
and death.

Cohort Relevance Some models involved data borrowed from other 
settings, for example social contact data from the 
pre-COVID-19 period, or data on infection rate or 
disease severity from other countries. Assessments 
were needed to determine whether these data 
could safely be used to drive models for Israel.
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numbers broken down by age groups. These models 
could not be used early in the pandemic, as data were not 
available at that level of granularity. Similarly, the efforts 
by the Ministry of Health were limited, in comparison to 
the health funds, by lack of individual level data on, for 
example, comorbidities and general health-conscious 
behavior.

An article in the Scottish press highlights the prob-
lems that result from problematic data. (https://www.
heraldscotland.com/news/19932323.public-health-scot-
land-pulls-covid-case-rate-data-claims-demonstrates-
conclusively-vaccines-not-working/) Weekly data from 
Public Health Scotland (PHS) for the end of January and 
the beginning of February 2022 showed higher rates of 
COVID-19 infection among vaccinated than among 
unvaccinated in Scotland. The reports were quickly 
exploited by vaccination opponents to support claims 
that vaccination is driving infection. However, subse-
quent review by PHS found that the rates were based on 
inaccurate data on the size of the vaccinated and unvacci-
nated populations and were convinced that the resulting 
over-estimation of the number of unvaccinated artifi-
cially reduced their infection rate.

Model elements
The models covered a range of approaches, from regres-
sion analysis to stochastic epidemic models. The former 
are largely empirical models, whereas the latter are “first 
principle” science-based models. This is a natural basis 
for distinguishing between models.

There are several advantages to the science-based 
models.

  • They are derived from first principles that mirror 
scientific understanding of how epidemics spread 
in a population. One important consequence is 
that their assumptions are transparent and open 
to criticism; another is that it is not difficult to 
introduce modifications that may make them more 
realistic.

  • They have been effectively used in modeling many 
infectious diseases.

  • They have parameters that dictate the dynamics of an 
epidemic.

  • Straightforward modifications allow stratification of 
the models, say by age groups, although this leads to 
a substantial increase in the number of parameters.

The major advantage of the empirical models is their sim-
plicity and their focus on the primary task of providing 
accurate forecasts. The assumptions that drive the sci-
ence-based models can turn from a strength to an Achil-
les heel if they prove to be inaccurate. One of the lessons 
repeatedly learned throughout the COVID-19 pandemic 
has been the ability of the virus to call into question 

commonly accepted truths regarding infectious disease 
spread.

Since the 18th century, when Swiss mathematician and 
physicist Daniel Bernoulli developed mathematical mod-
els to study how variolation could be used to diminish the 
spread of smallpox, researchers have sought to develop 
models that can examine and explore the dynamics of 
infectious disease transmission. In today’s world, and 
especially during the SARS-CoV-2 pandemic of the last 
two years, models are the only means of predicting dis-
ease spread and thus are essential for national and inter-
national decision-making. For further discussion about 
the need for mathematical models in epidemiology, see 
[2, 3].

The models can be roughly divided into three 
categories:

1. Fully empirical models, i.e., regression, machine 
learning and deep learning. These statistical models are 
very powerful tools which use known data to predict 
the future, and can also accommodate large amounts of 
data. The main drawback to statistical models in COVID-
19 is their inability to predict new and future confirmed 
cases in the presence of changing conditions, for example 
a scenario of a new variant or the immunization of the 
population.

However, for predicting the clinical outcome of a 
COVID-19 patient following infection, statistical models 
are important, since disease progress depends heavily on 
the patient’s health status and medical condition.

2. Mathematical models for population disease spread. 
These models use a set of coupled differential equations 
to predict the spread of disease. The SIR methodology 
[4] and its refinements, such as the SEIR model [5], are 
the outstanding examples of this class. They have been 
the dominant approach in the scientific literature for 
studying infectious diseases and were applied by several 
of the modelists. SEIR stands for “Susceptible, Exposed, 
Infected, Removed” which serve to decompose the popu-
lation. The model describes an epidemic via movement 
of the population from one compartment to another. 
Individuals who are susceptible become exposed, then 
become infected, and finally are removed from the popu-
lation. Removal can be either by cure or by death. Tran-
sitions from one state to another are governed by rate 
equations and resulting sojourn time distributions. The 
former describe the rate at which individuals move from 
one compartment to another, the latter the length of time 
they remain in a state before moving.

The single most important parameter in these models 
is the reproduction number, R, which relates the average 
number of susceptible individuals that will be infected by 
a newly infected individual, and can be estimated from 
data on the population counts in each compartment. The 
reproduction number became a mainstay of monitoring 
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and reporting throughout the epidemic. From the onset 
of the pandemic, all Israelis became familiar with the idea 
that hearing R > 1 on the evening news was a sign that 
things were getting worse.

See [6, 7] for more detailed information and a review of 
applications of the SIR family to modeling and forecast-
ing annual influenza outbreaks.

The modelists who remained at the empirical end of the 
spectrum emphasized regression techniques. These mod-
els link an outcome Yt on day t to k predictor variables 
X1,t, X2,t, . . . , Xk,t that might be relevant for predicting 
the value of Yt . Often the predictors were the outcome 
itself, or other related variables, recorded on earlier days.

3. Agent-based (or particle) models. These are math-
ematical models that operate at the level of the individual 
person rather than the population as a whole. One of the 
disadvantages of population-level mathematical models 
is their inability to model system dynamics, in particu-
lar when various population subgroups are characterized 
by different dynamics. In principle, this can be reflected 
by modeling the population as a sum of the sub-popula-
tions, with each one characterized by features unique to 
it, such as age, dynamics, etc. Since non-pharmeceutical 
interventions (NPIs) play an essential role in control-
ling COVID-19, a geography-based model is necessary 
because these NPIs fluctuate across countries. Also, a 
successful model should divide the population into sev-
eral age groups, matching their varying patterns of social 
interactions. Making the model realistic leads to a large 
number of groups, though, and would require writing a 
different equation for each, which complicates the model 
greatly.

One effective way to overcome these complications is 
to use instead an agent-based model which represents 
every single person by a unique “particle”. This leads to a 
very granular model, but with easy-to-understand rules 
governing social interaction for each individual, based 
on the subgroup of the population to which the indi-
vidual belongs. Hence, microsimulation modeling comes 
into play in which we have a high degree of heterogene-
ity, with multiple individuals, each behaving differently. 
The modeling and simulation proceed by allowing all 
the individuals to behave and interact according to these 
rules. Then the resulting macroscopic impact on society 
is observed.

Other modeling approaches were also used. Some 
modelists took a translational approach, using science-
based models developed with related settings in mind 
and demonstrating that they could be effectively applied 
to COVID-19 data. Others were at more of a middle 
ground on the empirical-mechanistic axis, using process 
analysis to decompose the route from predictors to out-
comes into more detailed steps and then applying empiri-
cal analysis to these building blocks.

In this paper, we show how all three types of models 
have been used in Israel by different research groups to 
model the spread of the coronavirus under various con-
straints (NPIs, effective vaccines, etc.) and the clinical 
course of COVID-19, e.g., predicting the a patient’s health 
status during the period after infection or hospitalization.

The models in practice.
The SIR/SEIR family was used directly both by Gazit 

and his partners at the Hebrew University and by Hup-
pert and the team at the Gertner Institute. Both groups 
used the age-stratified refinement of the model. Gazit’s 
group also used a model developed by De-Leon and 
Pederiva [8] which is described below. They used the 
models to produce accurate predictions of infections, 
severely ill, and mortality for both the short-term and 
for periods extending to 5–6 weeks ahead. The team also 
developed a method for estimating R using only very 
recent data, adding valuable temporal relevance to the 
estimates. An important contribution of the group to the 
Israeli cabinet deliberations was their use of the models 
to assess the effects of policy interventions. In December 
2020, taking account of international data relating quar-
antines and lockdowns to reduced infection and severe 
illness, they quantified the effect of such restrictions on 
near-term impact for Israel and compared alternative 
times for their implementation. Similar analyses were 
used to predict the effects of the vaccination campaign 
[9]. These changes highlight the role these measures had 
in tempering the impact from widespread infection. The 
omicron variant, which began to dominate infections in 
December 2021, was both more infectious and less severe 
than the previous variants. Both of these properties are 
essential ingredients of good predictions and thus posed 
new challenges. The delayed onset of the omicron wave 
in Israel, due to limiting entry to Israel at Ben Gurion 
Airport, made it possible to adjust the models by incor-
porating data on omicron from other countries with 
earlier initiation times. The resulting model-based pre-
dictions played a role in the decision to avoid implement-
ing another lockdown in January 2022.

Huppert and the group from Gertner also found that 
the SIR/SEIR models produced accurate short-term fore-
casts. Their age-stratified model required as input both 
stratified infection counts and social contact data for 
each pair of age groups. The former came from the Min-
istry of Health, but there was no official source for the 
latter. The team used Google mobility indices to fill in the 
gap. After Israel commenced its vaccination campaign in 
late December 2020, vaccination status was added as a 
further stratifying variable. The models further assumed 
that infection counts would follow Poisson distributions 
about their expected values. This assumption was borne 
out in the data and gave good fits. The models adapted 
well to the onset of the omicron variant. By the end of the 
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first week of January, 2022, early in the omicron wave, the 
model provided accurate forecasts of how the infection 
counts would increase and when they would peak.

De-Leon and her colleagues at the University of Trento 
derived an innovative model inspired by physics. This 
novel approach uses basic principles of statistical phys-
ics, in the spirit of Monte Carlo algorithms, to define an 
“agent-based” model, in which each individual in the pop-
ulation is explicitly represented. This class of models has 
a rich history; see for example [10, 11]. De-Leon’s model 
treats individuals as “particles” in a physical system, with 
the probability of disease transition a function of the 
distance between the associated particles. Social mobil-
ity is reflected in the model by a parameter that governs 
motion of the particles within the domain of the system. 
For details, see [8, 12]. Although agent-based models are 
developed at the “micro” level of individuals, it is com-
mon to assess their value by their ability to mimic macro-
level behavior. Here this meant comparisons of the model 
predictions to observed infection patterns. De-Leon 
reported close tracking to observed Israeli and UK data 
thru all the early stages of the epidemic. The model also 
adapted well to the effects of the vaccination campaign 
and the waning effect of the vaccine after about 5 months 
[12, 13]. The particles can be divided into many sub-pop-
ulations, making stratification easy to include [14].

Rossman, Gazit and Sprecher all described efforts to 
predict the number of COVID-19 patients requiring hos-
pitalization and treatment in intensive care. This was a 
major concern early in the epidemic, when it appeared 
that the extent of available respirators would fall well 
short of the number of patients in need of them. Ross-
man emphasized, as well, the importance of the mod-
els as a basis for comparison and policy evaluation. His 
group looked at questions like whether the length of hos-
pital stays for COVID-19 patients were decreasing over 
time and what was the effect of the vaccination campaign 
at a population level [14]. The model that he and his col-
leagues developed is a compartment model similar in 
nature to the SIR model, but focusing on the stages that 
arise following infection. Does hospitalization occur? If 
so, how long is the patient in the hospital? How long does 
it take for patients to move from standard care to inten-
sive care? Initial efforts to work with simple count data 
were limited in their ability to answer important ques-
tions, as they failed to account for the full time course 
of patients who were currently hospitalized but with-
out final outcomes. Higher resolution data were needed 
that traced these individual flows. Once those data were 
obtained, the team resolved the analysis problems using 
techniques from statistical survival analysis to account 
for the censoring of patients still hospitalized, Cox pro-
portional hazards regression models to assess factors 
affecting sojourn times, and competing risk analysis to 

account for the different outcomes that might lie ahead 
[15]. Among the interesting findings was that in-hospital 
death rates for COVID-19 patients were higher during 
times of heavy load [16].

Gazit’s team reported similar methods and results to 
those presented by Rossman for the Weizmann group. 
Gazit also reported on the effective use of sojourn time 
models and infection counts to forecast the number of 
patients who would enter the hospital.

Sprecher reported on the modeling efforts at TASMC. 
The goals were to facilitate planning and preparation in 
the hospital. In addition to the challenges of managing 
COVID-19 patients, TASMC was concerned about care 
for non-COVID patients, due to the resources that had 
to be diverted from regular services. With the help of an 
international advisory panel, the TASMC task force pro-
duced a dashboard for continual and up-to-date moni-
toring of patient loads. For planning ahead, the team 
focused on short-term forecasting (1–2 weeks ahead) of 
the number of patients, including a breakdown by sta-
tus with forecasts of severely ill or patients in need of 
ventilation. The forecasts were computed from regres-
sions that use as input recent infection data, smoothed 
to remove weekly trends. As more data were accumu-
lated, the model also incorporated information on the 
typical sojourn time from infection to severe disease. 
Sprecher noted that one weakness of the model is a ten-
dency to over-predict peak loads. Like Gazit’s group, the 
TASMC team used data from foreign sources to revise 
the model for accurate predictions when the omicron 
variant became dominant. He also noted that the useful-
ness of the model was assessed in terms of whether the 
forecasting errors were small enough to permit the hos-
pital to function successfully, a goal that was consistently 
achieved.

Models, policy and decision making
Did the models influence policy and decision making? 
Ash gave a positive answer in his opening remarks, as did 
Balicer in his discussion. At the meeting, the modelists 
noted several areas where their work was instrumental 
in decision making, but generally focused more on the 
details and results of the models than on their impact. 
For example, Gazit pointed to the influence of the mod-
els on decisions to limit mobility and the number of par-
ticipants in large indoor events. Subsequently he added 
some of the direct links to policy described earlier. Hup-
pert noted the value of the models from the Gertner 
Institute in establishing initial reference scenarios. Spre-
cher spoke as both a modelist and a decision maker and it 
was clear that the work by his task force directly affected 
policy at TASMC.

Effective communication is essential to link decision 
making to modeling goals and results. Balicer emphasized 
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that modelists need to be aware of the different needs of 
decision makers as the epidemic progressed. Their initial 
concern was to have reasonable scenarios that could pro-
vide broad limits for possible action. This was soon fol-
lowed by accurate nowcasting and eventually advancing 
to the ability to assess in advance the potential effects of 
interventions. Benjamini pointed to the variety of model-
ing groups in Israel working on COVID-19 data, specu-
lating that perhaps this variety, rather than leading to a 
unified and harmonious voice, created a cacophony that 
detracted from the ability to influence national leaders.

Benjamini stressed the need to describe uncertainty 
well. That is a challenging task, as there are multiple 
factors that contribute to variability. These include lim-
itations and inaccuracies in the model, and the capri-
ciousness of the data on which they are fitted. The 
well-known quote from George Box that “all models are 
wrong, but some are useful” was mentioned by several 
speakers. Benjamini’s call echoes that of an international 
collection of experts who published a “model mani-
festo” urging modelists to recognize shortcomings and 
to accurately portray resulting uncertainty [17]. Balicer 
also emphasized the need to recognize that the models 
will always have some failings, especially for purposes of 
long-term predictions.

In quantifying uncertainty for model predictions, Gazit 
stressed that the uncertainty regarding behavioral inputs 
likely dwarfed uncertainty as to the exact form of the 
model; ergo many alternative models can still be useful. 
In particular for evaluating potential policy options, he 
noted that they depend heavily on assumptions about 
how public behavior will change. For example, will peo-
ple comply with a lockdown? Will they agree to get a vac-
cination? Gazit argued that this level of input uncertainty 
can best be described by considering a range of possible 
response patterns, from optimistic to pessimistic, lead-
ing to a corresponding range of predictions. That allowed 
him and his colleagues to highlight the uncertainty in the 
predictions, but at the same time to attach numerical val-
ues to those scenarios; he found that hard numerical pre-
dictions were essential input for those making national 
policy.

Balicer and Benjamini also mentioned the importance 
of accurate communication to the public. Reflecting 
uncertainty there is crucial, as the media often want a 
single answer and resist the idea that model results and 
predictions are subject to variability.

International perspective
The use of mathematical models and the challenge of 
obtaining timely, accurate and clear data were by no 
means unique to Israel. Rosenfeld and Tibshirani [18] 
summarized articles in a special collection devoted to 
monitoring and forecasting the COVID-19 pandemic, 

with emphasis on application in the United States. They 
state early in their article that “we ended up shifting our 
focus to nearly entirely on the data end of the spectrum”. 
The forecasting teams in the US faced all the challenges 
listed above, with the additional burden of having to work 
with much more diffuse, and less uniform, reporting than 
in Israel. One of their initial headers is “Understanding 
the data generation process is critical for downstream 
applications”. With regard to timeliness, Rosenfeld and 
Tibshirani [18] noted that even though provisional data 
often are not complete, good historical records on such 
data can still make them very valuable for modeling and 
prediction.

In Italy, the lack of data prompted a petition, signed 
by 1400 statisticians and researchers, urging the govern-
ment to make data available for analysis. The same issue 
was noted as a significant area for improvement in Aus-
tralia by Trewin and Fisher [19].

The Royal Statistical Society (RSS) formulated a 
10-point proposal for improving the ability to under-
stand and respond to a pandemic [20]. Data-related 
issues resonate throughout the proposal. Here are some 
specifics. At the top of their list the RSS stressed the 
need to “invest in public data”. Specifically they called 
for a review of the current situation, including systems 
and structures for data collection, levels of investment, 
assembling data from diverse sources, both within the 
United Kingdom and at an international level, and bet-
ter coordination between the data infrastructure and the 
ensuing data analysis. The second point emphasized the 
importance of making data, and the analysis based on it, 
openly available to ensure public trust. This idea recurs in 
the third point, leading to a recommendation to invest in 
a central portal for collecting official public health data, 
operating “under Open Data principles”, and to designate 
a framework for publishing results from the data. Point 
7 notes that “paucity of data” hindered initial efforts to 
respond to COVID-19 and calls for an effective ongoing 
surveillance program to monitor epidemics and inform 
decision-makers.

Molenberghs [21] described the response to COVID-
19 in Belgium, presenting a broad picture of biostatistical 
involvement, much of it centered on data and modeling. 
In particular, he highlighted the importance of model-
ing in assessing the likely effect of NPIs. Mathematical 
models played a key role in the Belgian decision to main-
tain more stringent NPIs over Christmas and New Year 
of 2020–2021. The models showed potential for a high 
peak; the continued restrictions helped to keep COVID 
under control. Official data in Belgium were spread over 
several different administrative tiers; this led to difficulty 
in establishing a unified national database with the infor-
mation needed for all the modeling efforts. The need to 
adjust data for underreporting added challenges, both in 
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modeling the data and in presenting results, analyses and 
predictions to the public [21, 22].

Germany also was faced with a need to produce effec-
tive summaries and nowcasts from limited data, in 
particular due to delays in the reporting system for indi-
viduals who tested positive for COVID-19 [23]. None-
theless, reporting raw, unadjusted infection rates was 
common. This practice drew sharp criticism from Fritz 
et al. [23] Instead, they stressed the need for “nuanced 
data analysis”; in short, for summaries that use statistical 
models to adjust for the reporting mechanism and pro-
duce more accurate nowcasts of infection.

Dattner et al. [24] provided additional comparisons to 
what happened in other countries. Di Serio et al. [25] also 
described challenges for understanding COVID-19 that 
arose from lack of proper data for modeling and analysis.

Ioannidis, Cripps and Tanner [26] presented a critical 
summary of the modeling and forecasting efforts in the 
United States. Although published in 2022, it is largely 
based on a blog that went public in June 2020 and the 
results emphasize the poor performance of forecasts 
made during the first months of the pandemic, when 
good data were scarce and scientists and modelers were 
making adjustments to improve the match of their pre-
dictions to observed outcomes. Data problems (and a 
host of others) were cited as a key reason for the inac-
curacy of the forecasts. The authors conclude by empha-
sizing the need for predictions to be accompanied by an 
accurate description of uncertainty.

The challenges of developing data-based policy led to 
broad international contacts, including sharing data and 
the insights gained from analyzing and modeling them. 
The organized data collection mechanisms and the rapid 
rollout of the initial vaccination in Israel prompted many 
countries to seek support. The authors specifically noted 
several countries that approached Israel for data and 
analyses: the United States, Switzerland, Belgium, France, 
the United Kingdom, Japan, Germany and Poland.

Looking ahead
We noted early in the article the close interplay between 
models and data. Several ideas came up in the talks and 
discussion about how to build better data infrastructure 
to support such modeling efforts in future epidemics. 
For example, Balicer called for the creation of a central, 
national health information database. Benjamini pointed 
to the need for data at relevant spatial and temporal reso-
lutions; for example, hospital forecasts would be better 
served by infection data in their catchment areas than 
by national data. Rossman noted the need for patient-
specific data for the models his group developed and the 
importance of fusing different data sources in an appro-
priate manner [27] - these may include digital surveil-
lance tools such as the symptoms survey employed in 

Israel during the first wave [28] and other emerging pop-
ulation-wide technologies such as wastewater surveil-
lance. Huppert and Balicer commented on the difficulty 
to predict how people will respond to interventions that 
affect their social and economic freedom, and the asso-
ciated need for data and data collection methodology on 
social mobility and contact, key inputs to the age-strati-
fied models.

There was full consensus among the speakers and 
discussants that modeling must be an essential tool in 
guiding public response to an event like the COVID-19 
pandemic. Models are necessary to track the pandemic, 
to assess policy options and to guide decision makers. 
There was also agreement that, to be useful, modeling 
efforts need to be directed to the questions that are cen-
tral to policy.

There was not a consensus as to which models best 
served those purposes, or on how to focus the attention 
of national leaders on those models, their conclusions 
and their recommendations. One of the initiatives that 
came up was the need for an open and critical forum for 
discussion and interchange among modelists and other 
informed scientists. The goal of such dialog should be 
to critically examine the underpinnings of the models, 
their results and their predictions. Ideally, this could lead 
to scientific consensus and the unified and harmonious 
voice sought by Benjamini. Clearly, the dialog would need 
to be open and frank, with critics free to express their 
reservations about models. Huppert added to this the 
need for better communication between the modelists 
and the decision makers.

Rosenfeld and Tibshirani [18] added an interesting 
complementary thought in their summary. They pointed 
to failures of the forecasts in the US as (i) evidence that 
there are still many details of epidemic spread that we 
don’t understand; but (ii) the data from the COVID-19 
epidemic is thus an ideal laboratory in which to refine 
and improve our knowledge. They see this as essential to 
making the world better prepared to deal with future epi-
demics. Their second point emphasizes the value in con-
tinued curation and quality improvement of the Israeli 
COVID-19 data and the need to make it available as a 
resource for research in modeling.

The proliferation of COVID-19 modeling groups in 
Israel was a spontaneous grassroots development. It 
included many scientists, all working pro bono, and 
interested in contributing to the national response. It is 
important to have a diversity of approaches and opin-
ions on how to most effectively use modeling to guide 
policy. However, this diversity also runs the risk of cre-
ating confusion and controversy. Moreover, it may have 
the dangerous consequence of politicizing the process, 
with leaders choosing the experts whose recommen-
dations support their prior opinions. These risks are 
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especially problematic in the initial stages of an epidemic, 
when reliable scientific advice is crucial, and the need for 
rapid response rules out the broad and open discussion 
that typifies science. Rosenfeld and Tibshirani [18], and 
Ioannidis et al. [26], described a similar situation in the 
United States, with multiple groups doing modeling. We 
suspect that the presence of parallel modelers was com-
mon to most countries, but we do not have any hard evi-
dence to that effect.

Israel needs to be better prepared for future epidemics. 
That will require developing infrastructure and exper-
tise within the Ministry of Health and, in particular, the 
Management Team of Epidemics, and establishing effec-
tive communication channels between the experts and 
the policy leaders. In a crisis such as COVID-19, it will 
often be necessary to bring additional experts into the 
modeling and advisory loop. Professional organizations 
in relevant domains might be useful to help organize 
such efforts. The National Academy of Sciences can play 
an important role; the objectivity and inter-disciplinary 
breadth of the Academy give it a unique status that could 
be leveraged in coordinating the efforts of all the aca-
demic and industry experts who wanted to contribute. To 
do so requires action now to set up the necessary organi-
zational framework; we cannot afford to wait for the next 
crisis.
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